Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hum Evol ; 140: 102338, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-29033136

RESUMO

Carbon isotope ratios of mammalian teeth from the Kanapoi site in northern Kenya are interpreted in the context of C3 and C4 derived resources to investigate the paleoecology of Australopithecus anamensis. δ13C values of large mammals, when compared at the taxon level, show an ecosystem that is strongly biased towards mixed feeders and browsers. However, sufficient C4 resources were present such that some C4 dominated grazers were also present in the large mammal fauna. Analyses of micromammals shows that their diets were C3 dominated or C3-C4 mixed. Carbon isotope studies of primates shows that the major primate tribes-Colobini, Papioini, Hominini-all made some use of C4 resources in their respective diets; the Hominini had a higher fraction of C3 diet resources than the other primate tribes represented in the fossil record.


Assuntos
Dieta/veterinária , Mamíferos/fisiologia , Animais , Ecossistema , Fósseis , Quênia
2.
Proc Natl Acad Sci U S A ; 114(28): 7331-7336, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28652366

RESUMO

Aridification is often considered a major driver of long-term ecological change and hominin evolution in eastern Africa during the Plio-Pleistocene; however, this hypothesis remains inadequately tested owing to difficulties in reconstructing terrestrial paleoclimate. We present a revised aridity index for quantifying water deficit (WD) in terrestrial environments using tooth enamel δ18O values, and use this approach to address paleoaridity over the past 4.4 million years in eastern Africa. We find no long-term trend in WD, consistent with other terrestrial climate indicators in the Omo-Turkana Basin, and no relationship between paleoaridity and herbivore paleodiet structure among fossil collections meeting the criteria for WD estimation. Thus, we suggest that changes in the abundance of C4 grass and grazing herbivores in eastern Africa during the Pliocene and Pleistocene may have been decoupled from aridity. As in modern African ecosystems, other factors, such as rainfall seasonality or ecological interactions among plants and mammals, may be important for understanding the evolution of C4 grass- and grazer-dominated biomes.


Assuntos
Clima , Fósseis , Hominidae , Paleontologia , África Oriental , Animais , Evolução Biológica , Biomassa , Celulose/análise , Esmalte Dentário/química , Ecologia , Ecossistema , Meio Ambiente , Geografia , Herbivoria , Quênia , Isótopos de Oxigênio/análise , Folhas de Planta/metabolismo , Plantas , Poaceae , Análise de Regressão
3.
Sci Rep ; 6: 32807, 2016 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-27616433

RESUMO

Megaherbivores (>1000 kg) are critical for ecosystem health and function, but face population collapse and extinction globally. The future of these megaherbivore-impoverished ecosystems is difficult to predict, though many studies have demonstrated increasing representation of C3 woody plants. These studies rely on direct observational data, however, and tools for assessing decadal-scale changes in African ecology without observation are lacking. We use isotopic records of historical common hippopotamus (Hippopotamus amphibius) canines to quantify herbaceous vegetation change in Queen Elizabeth National Park, Uganda following a period of civil unrest and poaching. This poaching event led to population collapse of two threatened African megaherbivore species: hippopotamus and African elephants (Loxodonta africana). Serial carbon isotope ratios (δ(13)C) in canine enamel from individuals that lived between 1960-2000 indicated substantial increases in C3 herbaceous plants in their diet (<20% C3 in the 1960s to 30-45% C3 in the 80s and 90s), supported by other observational and ecological data. These data indicate megaherbivore loss results in succession of both woody and herbaceous C3 vegetation and further reaching effects, such as decreased grazing capacity and herbivore biodiversity in the area. Given multiple lines of evidence, these individuals appear to accurately capture herbaceous vegetation change in Mweya.


Assuntos
Ração Animal/análise , Artiodáctilos/fisiologia , Dente Canino/química , Elefantes/fisiologia , Animais , Isótopos de Carbono/análise , Ecossistema , Extinção Biológica , Herbivoria , Vigilância da População , Uganda
4.
Am J Primatol ; 78(10): 1041-54, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26444915

RESUMO

Stable isotope analysis is a promising tool for investigating primate ecology although nuanced ecological applications remain challenging, in part due to the complex nature of isotopic variability in plant-animal systems. The aim of this study is to investigate sources of carbon and nitrogen isotopic variation at the base of primate food webs that reflect aspects of primate ecology. The majority of primates inhabit tropical forest ecosystems, which are dominated by C3 vegetation. We used stable isotope ratios in plants from Kibale National Park, Uganda, a well-studied closed-canopy tropical forest, to investigate sources of isotopic variation among C3 plants related to canopy stratification, leaf age, and plant part. Unpredictably, our results demonstrate that vertical stratification within the canopy does not explain carbon or nitrogen isotopic variation in leaves. Leaf age can be a significant source of isotopic variation, although the direction and magnitude of this difference is not consistent across tree species. Some plant parts are clearly differentiated in carbon and nitrogen isotopic composition, particularly leaves compared to non-photosynthetic parts such as reproductive parts and woody stem parts. Overall, variation in the isotopic composition of floral communities, plant species, and plant parts demonstrates that stable isotope studies must include analysis of local plant species and parts consumed by the primates under study from within the study area. Am. J. Primatol. 78:1041-1054, 2016. © 2015 Wiley Periodicals, Inc.


Assuntos
Isótopos de Carbono , Folhas de Planta/química , Primatas , Animais , Dieta , Ecologia , Florestas , Plantas , Árvores , Uganda
5.
Proc Natl Acad Sci U S A ; 112(37): 11467-72, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26240344

RESUMO

A large stable isotope dataset from East and Central Africa from ca. 30 regional collection sites that range from forest to grassland shows that most extant East and Central African large herbivore taxa have diets dominated by C4 grazing or C3 browsing. Comparison with the fossil record shows that faunal assemblages from ca. 4.1-2.35 Ma in the Turkana Basin had a greater diversity of C3-C4 mixed feeding taxa than is presently found in modern East and Central African environments. In contrast, the period from 2.35 to 1.0 Ma had more C4-grazing taxa, especially nonruminant C4-grazing taxa, than are found in modern environments in East and Central Africa. Many nonbovid C4 grazers became extinct in Africa, notably the suid Notochoerus, the hipparion equid Eurygnathohippus, the giraffid Sivatherium, and the elephantid Elephas. Other important nonruminant C4-grazing taxa switched to browsing, including suids in the lineage Kolpochoerus-Hylochoerus and the elephant Loxodonta. Many modern herbivore taxa in Africa have diets that differ significantly from their fossil relatives. Elephants and tragelaphin bovids are two groups often used for paleoecological insight, yet their fossil diets were very different from their modern closest relatives; therefore, their taxonomic presence in a fossil assemblage does not indicate they had a similar ecological function in the past as they do at present. Overall, we find ecological assemblages of C3-browsing, C3-C4-mixed feeding, and C4-grazing taxa in the Turkana Basin fossil record that are different from any modern ecosystem in East or Central Africa.


Assuntos
Dieta/veterinária , Herbivoria/fisiologia , Mamíferos/fisiologia , Animais , Evolução Biológica , Isótopos de Carbono/análise , Ecologia , Ecossistema , Fósseis , Hominidae , Quênia , Paleontologia , Datação Radiométrica , Suínos
6.
J Hum Evol ; 83: 28-45, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25883052

RESUMO

The opening and closing of the equatorial East African forest belt during the Quaternary is thought to have influenced the biogeographic histories of early modern humans and fauna, although precise details are scarce due to a lack of archaeological and paleontological records associated with paleoenvironmental data. With this in mind, we provide a description and paleoenvironmental reconstruction of the Late Pleistocene Middle Stone Age (MSA) artifact- and fossil-bearing sediments from Karungu, located along the shores of Lake Victoria in western Kenya. Artifacts recovered from surveys and controlled excavations are typologically MSA and include points, blades, and Levallois flakes and cores, as well as obsidian flakes similar in geochemical composition to documented sources near Lake Naivasha (250 km east). A combination of sedimentological, paleontological, and stable isotopic evidence indicates a semi-arid environment characterized by seasonal precipitation and the dominance of C4 grasslands, likely associated with a substantial reduction in Lake Victoria. The well-preserved fossil assemblage indicates that these conditions are associated with the convergence of historically allopatric ungulates from north and south of the equator, in agreement with predictions from genetic observations. Analysis of the East African MSA record reveals previously unrecognized north-south variation in assemblage composition that is consistent with episodes of population fragmentation during phases of limited dispersal potential. The grassland-associated MSA assemblages from Karungu and nearby Rusinga Island are characterized by a combination of artifact types that is more typical of northern sites. This may reflect the dispersal of behavioral repertoires-and perhaps human populations-during a paleoenvironmental phase dominated by grasslands.


Assuntos
Distribuição Animal , Demografia , Meio Ambiente , Paleodontologia/história , África Oriental , Animais , Ecossistema , Fósseis , História Antiga , Humanos , Lagos
7.
Proc Natl Acad Sci U S A ; 112(12): 3674-9, 2015 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-25775535

RESUMO

Specialized pastoralism developed ∼3 kya among Pastoral Neolithic Elmenteitan herders in eastern Africa. During this time, a mosaic of hunters and herders using diverse economic strategies flourished in southern Kenya. It has been argued that the risk for trypanosomiasis (sleeping sickness), carried by tsetse flies in bushy environments, had a significant influence on pastoral diversification and migration out of eastern Africa toward southern Africa ∼2 kya. Elmenteitan levels at Gogo Falls (ca. 1.9-1.6 kya) preserve a unique faunal record, including wild mammalian herbivores, domestic cattle and caprines, fish, and birds. It has been suggested that a bushy/woodland habitat that harbored tsetse fly constrained production of domestic herds and resulted in subsistence diversification. Stable isotope analysis of herbivore tooth enamel (n = 86) from this site reveals, instead, extensive C4 grazing by both domesticates and the majority of wild herbivores. Integrated with other ecological proxies (pollen and leaf wax biomarkers), these data imply an abundance of C4 grasses in the Lake Victoria basin at this time, and thus little risk for tsetse-related barriers to specialized pastoralism. These data provide empirical evidence for the existence of a grassy corridor through which small groups of herders could have passed to reach southern Africa.


Assuntos
Tripanossomíase Africana/história , Doenças dos Animais , Animais , Arqueologia , Biomarcadores , Isótopos de Carbono/química , Bovinos , Esmalte Dentário/patologia , Ecossistema , Geografia , História Antiga , Humanos , Quênia , Pólen/química , Dente/patologia , Moscas Tsé-Tsé
8.
Proc Natl Acad Sci U S A ; 110(26): 10507-12, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23733967

RESUMO

Theropithecus was a common large-bodied primate that co-occurred with hominins in many Plio-Pleistocene deposits in East and South Africa. Stable isotope analyses of tooth enamel from T. brumpti (4.0-2.5 Ma) and T. oswaldi (2.0-1.0 Ma) in Kenya show that the earliest Theropithecus at 4 Ma had a diet dominated by C4 resources. Progressively, this genus increased the proportion of C4-derived resources in its diet and by 1.0 Ma, had a diet that was nearly 100% C4-derived. It is likely that this diet was comprised of grasses or sedges; stable isotopes cannot, by themselves, give an indication of the relative importance of leaves, seeds, or underground storage organs to the diet of this primate. Theropithecus throughout the 4- to 1-Ma time range has a diet that is more C4-based than contemporaneous hominins of the genera Australopithecus, Kenyanthropus, and Homo; however, Theropithecus and Paranthropus have similar proportions of C4-based resources in their respective diets.


Assuntos
Dieta/história , Theropithecus , África Oriental , Animais , Evolução Biológica , Isótopos de Carbono/análise , Esmalte Dentário/química , Fósseis , História Antiga , Quênia , Papio/metabolismo , Plantas Comestíveis/química , Plantas Comestíveis/metabolismo , África do Sul , Theropithecus/crescimento & desenvolvimento , Theropithecus/metabolismo
9.
Proc Natl Acad Sci U S A ; 109(52): 21277-82, 2012 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-23236160

RESUMO

We use stable isotope ratios in feces of wild mountain gorillas (Gorilla beringei) to test the hypothesis that diet shifts within a single year, as measured by dry mass intake, can be recovered. Isotopic separation of staple foods indicates that intraannual changes in the isotopic composition of feces reflect shifts in diet. Fruits are isotopically distinct compared with other staple foods, and peaks in fecal δ(13)C values are interpreted as periods of increased fruit feeding. Bayesian mixing model results demonstrate that, although the timing of these diet shifts match observational data, the modeled increase in proportional fruit feeding does not capture the full shift. Variation in the isotopic and nutritional composition of gorilla foods is largely independent, highlighting the difficulty for estimating nutritional intake with stable isotopes. Our results demonstrate the potential value of fecal sampling for quantifying short-term, intraindividual dietary variability in primates and other animals with high temporal resolution even when the diet is composed of C(3) plants.


Assuntos
Dieta/veterinária , Fezes/química , Gorilla gorilla/metabolismo , Marcação por Isótopo/métodos , Animais , Teorema de Bayes , Isótopos de Carbono , Feminino , Frutas , Isótopos de Nitrogênio , Uganda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...